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Abstract

Background: Restricted and repetitive behaviors (RRBs) are core features of autism spectrum disorder (ASD) and
one of the earliest behavioral signs of ASD. However, RRBs are also present in typically developing (TD) infants,
toddlers, and preschool-aged children. Past work suggests that examining change in these behaviors over time is
essential to distinguish between normative manifestations of these behaviors and behaviors that denote risk for a
neurodevelopmental disorder. One challenge in examining changes in these behaviors over time is that most
measures of RRBs have not established longitudinal measurement invariance. The aims of this study were to (1)
establish measurement invariance in the Repetitive Behavior Scales for Early Childhood (RBS-EC), a parent-report
questionnaire of RRBs, and (2) model developmental change in RRBs from 8 to 36 months.

Methods: We collected RBS-EC responses from parents of TD infants (n = 180) from 8 to 36 months (n = 606
responses, with participants contributing an average of 3-time points). We leverage a novel methodological
approach to measurement invariance testing (Bauer, Psychological Models, 22(3), 507–526, 2017), moderated
nonlinear factor analysis (MNLFA), to determine whether the RBS-EC was invariant across age and sex. We then
generated adjusted factor score estimates for each subscale of the RBS-EC (repetitive motor, self-directed, and
higher-order behaviors), and used linear mixed effects models to estimate between- and within-person changes in
the RBS-EC over time.

Results: The RBS-EC showed some non-invariance as a function of age. We were able to adjust for this non-
invariance in order to more accurately model changes in the RBS-EC over time. Repetitive motor and self-directed
behaviors showed a linear decline from 8 to 36 months, while higher-order behaviors showed a quadratic trajectory
such that they began to decline later in development at around 18 months. Using adjusted factor scores as
opposed to unadjusted raw mean scores provided a number of benefits, including increased within-person
variability and precision.

Conclusions: The RBS-EC is sensitive enough to measure the presence of RRBs in a TD sample, as well as their
decline with age. Using factor score estimates of each subscale adjusted for non-invariance allowed us to more
precisely estimate change in these behaviors over time.
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Introduction
Restricted and repetitive behaviors
The DSM-5 defines autism as a disorder marked by so-
cial deficits, as well as “restricted, repetitive patterns of
behavior, interests, or activities” [1]. These restricted and
repetitive behaviors (RRBs) include repetitive motor
movements, ritualistic behaviors, repetitive self-injury, in-
flexibility, and circumscribed and intense interests. RRBs
are among the earliest detectable behavioral markers of
ASD [43], with evidence from direct observation indicat-
ing that elevated frequencies of RRBs in children with
ASD can be identified as early as 12months [16, 22, 43].
Parent report of RRBs, as measured by the Repetitive
Behavior Scale-Revised (RBS-R [7]), indicates that 12-
month-old infants at high-familial risk for ASD who later
received a diagnosis (HR-ASD) have elevated repetitive
behaviors relative to high-risk infants who do not receive
an ASD diagnosis (HR-Neg) and low-risk children [55],
raising the possibility of using parent reports of RRBs as
an inexpensive early screening tool for ASD.
One challenge with characterizing RRBs, and especially

early in development, is that they are not specific to ASD.
Rather, they manifest in samples of typically developing
children [3, 15, 18, 20, 31, 49, 50, 56] and across a range of
neurodevelopmental disorders and monogenic syndromes
[17, 23, 33, 39, 54]. Because these behaviors variably mani-
fest across age and across the typical-to-atypical con-
tinuum [10], quantifying variability in selected
topographies requires consideration of normative patterns
of development and establishing psychometric integrity
on samples that include children who are typically devel-
oping. While some behaviors may be specific to ASD at
certain ages and levels of functioning (e.g., lateral glances
and/or unusual visual inspection in a 10-year-old), most
topographies of repetitive behavior are observed in typic-
ally developing children at some point over the course of
development. Therefore, establishing the psychometric in-
tegrity of measures that can capture meaningful variability
across the typical-to-atypical continuum is essential to ad-
vance our understanding of the constellation of features
that defines ASD [11, 12].
Further, to distinguish between normative RRBs and

those that are predictive of risk for an emerging neuro-
developmental disorder, it is critical to look at change in
RRBs over time. One study, Uljarević et al. [53], exam-
ined longitudinal change in RRBs in TD children as
measured through parent report (the Repetitive Behavior
Questionnaire-2; RBQ-2 [31]) and found that lower-
order behaviors (e.g., motor stereotypies) decreased from
15 to 77months, whereas higher-order behaviors (e.g.,
insistence on sameness) peaked around 26 months of
age before declining. These findings suggest that while
the presence of RRBs early in development may not be
atypical, their persistence over time may be.

In order to effectively measure changes in RRBs across
development, it is imperative that investigators are
confident that their measures reflect the same underlying
construct whether parents are reporting on a 9-month-
old or a 36-month-old. One previous study examining
change in two RRB sub-types showed that the underlying
two-factor structure was stable across 3-time points (15,
26, and 77months), suggesting that the underlying struc-
ture of the RBQ-2 was stable across development [53].
Referred to as “configural invariance” in the psychomet-
rics literature, establishing a common factor structure
over time is a crucial first step to assuring the develop-
mental interpretability of a measure. That is, if the nature
of the underlying construct changes qualitatively over
time, then quantitative estimates of substantive develop-
mental change (i.e., apples to apples) become inextricably
confounded with changes in the meaning of the measure
(i.e., apples to oranges). However, as is discussed under
the broader heading of ‘measurement invariance’ (MI)
testing, configural invariance is a necessary—though not
sufficient—step to assuring meaningful comparisons
across groups or within-individuals over time.

What is measurement invariance and why should we
care?
MI for a scale exists when “a scale or construct provides
the same results across several different samples or pop-
ulations” (APA 2014 [2], p. 211; see also [44]). In other
words, a scale is invariant if the distribution of responses
obtained from a group of individuals depends only on
their responses which the measurement is intended to
reflect, and not on other demographic characteristics
such as age or diagnostic group [36]. Without MI, one
cannot validly compare scores on a given scale between
groups or within individuals over time. Differential item
functioning (DIF) between male and female respondents
on measures of depression is a prototypic example. Due
to social norms, girls may tend to endorse the item
“cries easily” more often than do boys [47], leading to in-
flated estimated depression scores for girls because of
item bias. To accurately compare rates of depression be-
tween boys and girls, one must account for items that
function differently due to sex as opposed to true
differences in the underlying construct of interest
(depression).
Similarly, items on any questionnaire measuring RRBs

may function differently at different ages. Thus, to
model substantively meaningful change in the under-
lying constructs, we must first evaluate whether the
measure is invariant across time. Though this issue has
not yet been explicitly discussed in the context of RRBs,
researchers have noted how challenging it is to find a
measure that is sensitive to both age and cognitive devel-
opment and differences across diagnostic groups [24].
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Indeed, the notable variability in factor solutions that
have been proposed in the literature is likely due to both
(1) substantively meaningful differences in RRBs across
the populations and ages studied, and (2) measurement
sensitivity differences due to age and diagnostic status.
In order to distinguish between these two sources of
variability, it is critical that the field test MI and correct
for sources of non-invariance.
Factor analysis commonly considers three degrees of

MI. A measure has configural invariance when it has the
same factor structure across time (e.g., items load on to
the same latent factors across time) [41]. Researchers
must also test for the possibility that a latent factor
means something slightly different across groups or ages.
This is typically referred to as metric non-invariance,
and indicates that there are age differences in the factor
loadings (or that the items are not reflecting the same
construct over time). For example, in typically develop-
ing infants, the relation between a latent construct like
repetitive motor behaviors and the item “repeatedly
mouths objects” (i.e., the factor loading) may differ be-
tween young infants and 4-year-olds because repetitive
mouthing may be more meaningful for the latent
construct in infancy, when mouthing is developmentally
normative. By failing to account explicitly for these
differences in the measurement model, we would be
essentially comparing apples and oranges.
Assuming invariant factor loadings across groups

(metric invariance), it remains possible that, despite
showing identical levels of latent repetitive behaviors in
infancy and at age four, the same “repetitive mouthing”
item may be rated as higher in infancy, on average,
because of normative developmental differences in
object exploration. This is typically referred to as scalar
non-invariance. This would mean that—without explicit
adjustment in the measurement model—this difference
would sneak into our estimate of the construct mean
and lead to the spurious conclusion that repetitive be-
havior decreases between infancy and early childhood.
Adjusting for these biases is crucial for any meaningful
interpretation of development.
Traditionally, applied researchers have leveraged two

approaches for measuring and adjusting MI: multiple
groups analysis (MGA [25]) and multiple indicators,
multiple causes (MIMIC) modeling [26]. Each has spe-
cific strengths and weaknesses. MGA is perhaps the
most commonly used approach in MI testing and is es-
pecially useful when one is concerned about MI across
discrete groupings of individuals (e.g., sex, race). Briefly,
MGA works by fitting taxonomies of confirmatory factor
analytic models (CFAs) jointly to multiple covariance
matrices—one for each group—and systematically test-
ing the extent to which the parameters of interest (e.g.,
factor loadings, indicator intercepts, indicator residual

(co)variances, factor (co)variances) can be constrained to
equality across groups without significantly undermining
overall model fit (i.e., aggregate model fit across groups).
To the extent to which the parameters can be con-
strained to equality, the latent variables are said to be in-
variant. In cases in which some (but not all) of the
parameters can be constrained to equality, one invokes
‘partial’ MI [8]. Although there is debate about just how
non-invariant groups can be before the substantive
meaning of the construct differs across groups (see [9]),
the key strength of testing MI is that it allows one to
quarantine these differences to the measurement model.
This approach essentially removes sources of potential
bias from the latent construct and subsequent substan-
tive analyses.
A core advantage to MGA is that it allows one to

model heterogeneity in all of the parameters of typical
psychometric interest (e.g., factor loadings; item inter-
cepts; factor (co)variances, item residual (co)variances).
Specifically, MGA allows one to test and adjust for the
possibility of both metric and scalar invariance. MGA
can be a powerful tool toward this end. However, it also
has some non-trivial weaknesses. MGA becomes intract-
able quickly, as the number of discrete groupings ex-
tends beyond a few categories. Also, in order to apply
MGA to continuous moderators, such as age or income,
one has to discretize continuously distributed scales in
typically arbitrary ways.
MIMIC models take a slightly different approach to

MI testing that can help to address some of these weak-
nesses. Specifically, rather than fitting simultaneous
measurement models to separate covariance matrices
and testing systematic equality constraints across the
discrete groups, MIMIC models address MI in a manner
akin to regression adjustment (Fig. 1). Here, an individ-
ual’s level on a given indicator (e.g., repeated mouthing
of object) is considered to be due to the underlying la-
tent construct (i.e., repetitive behavior) (path a), as well
as one or more continuous (e.g., age) or categorical (e.g.,
sex) moderators (path b). Similar to multiple regression,
by simultaneously regressing, the indicator and the la-
tent construct on the moderator(s), the factor loading to
the indicator (path b) would represent the unique rela-
tion between the construct and the indictor that re-
mains—after adjusting for the moderator (path c). It
could also be considered a variant of a mediational
model, such that the moderator is thought to have a dir-
ect effect on the indicator, as well as an indirect effect
on the indicator by virtue of its effect on the latent con-
struct (paths a×b). In principle, as long as the latent vari-
able model is identified, one could include any number
or predictors, along with any potentially meaningful in-
teractions between them—an advantage over MGA. A
notable downside to traditional MIMIC models,
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however, is that they typically adjust only for scalar in-
variance. Modeling systematic difference in any of the
other parameters of typical interest (i.e., factor loadings,
factor, and/or residual measurement (co)variances) is a
far more involved endeavor (see [6]).
In sum, it is clear that testing and adjusting for MI is

critical to establishing valid inferences about group and
developmental differences. However, traditional ap-
proaches to MI testing have some weaknesses. Indeed,
these weaknesses are particularly problematic for longi-
tudinal studies, in which measurement non-invariance
may exist simultaneously between groups (e.g., diagnos-
tic group, sex) and time [13].
Fortunately, the last several years have seen a wealth

of psychometric innovation in the detection and adjust-
ment of MI (e.g., Approximate Measurement Invariance
and Alignment [4, 40, 41]; random effects [41]; see
Davidov, Muthén, and Schmidt [14] for review). In the
present study, we leverage a novel methodological ap-
proach to MI testing developed by Curran and Bauer [6,
13] that is particularly well-suited for accelerated longi-
tudinal study designs—moderated nonlinear factor ana-
lysis (MNLFA). Conceptually, MNLFA combines the
best aspects of MGA and MIMIC into a single approach.
Like MGA, MNLFA allows one to adjust for non-
invariance across all parameters of typical psychometric
interest. However, like MIMIC models, MNLFA allows
one to readily extend these tests to multiple, simultan-
eous moderators—either continuous or categorical.

The present study
The present study seeks to characterize longitudinal
change in RRBs in typically developing toddlers from 8
to 36months. Distinguishing between meaningful
change and measurement bias is a critical first step be-
fore modeling change, especially given the challenges as-
sociated with distinguishing between typical and atypical
early RRBs. In light of these challenges, we (a) leveraged
recent advances in latent variable modeling to establish
a longitudinally invariant measure of RRB, and (b) used
these measures to model normative and individual dif-
ference in RRB across infancy and early childhood. By
modeling factor score estimates derived from MNLFA
and accounting for measurement bias, the observed lon-
gitudinal trajectories will reflect what is meaningful
change in behavior, as opposed to change in how the in-
strument measures behaviors.

Methods
RBS-EC responses were pooled from two longitudinal
studies on social development. Criteria for study partici-
pation were identical for both studies. Infants were
required to (1) have no significant medical, genetic, or
neurological conditions, (2) have a birthweight > 2000 g,
(3) a gestational age ≥ 37 weeks, (4) have no first-degree
relatives with intellectual disability, psychosis and/or
schizophrenia, bipolar disorder, or autism spectrum dis-
order (ASD), and (5) a caregiver able to communicate in
English at a level to provide informed consent. For each
study, parents of infants and toddlers recruited from the
University of Minnesota Institute of Child Development
participant registry were invited to participate in a study
about their child’s development. The registry largely
reflects the racial/ethnic proportions of the broader
Minneapolis—St. Paul Metropolitan area but under-
represents the socio-economic diversity of this region.
Parents of all participants provided informed consent
and permission for their child to participate in this re-
search study. All studies involved online questionnaires,
as well as in-person visits to the lab.
In total, 612 RBS-EC questionnaires were collected

from 181 participants. After excluding questionnaires
with 50% or more missing data (n = 3), and samples
taken outside of our age range (n = 3) our final sample
comprised 606 RBS-EC questionnaires from 180 partici-
pants (88 male). Descriptive information on the final
sample can be found in Table 1.

Repetitive behavior scale for early childhood
The Repetitive Behavior Scale for Early Childhood (RBS-
EC [56]) is a 34-item parent-report questionnaire that is
a downward extension of the Repetitive Behavior Scale-
Revised (RBS-R [7]), with good-to-excellent psychomet-
ric properties and evidence of validity and reliability

Fig. 1 Example of MIMIC model. An individual’s response on item 1
is due to the underlying latent construct of repetitive motor
behaviors (path a) as well as an age moderator (path b). Path c
represents the factor loading on item 1 after adjusting for
the moderator
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(based on an independent sample of toddlers). The ques-
tionnaire is intended to capture normative variation in
young children that spans across the typical-to-atypical
continuum and has been used to detect difference in
RRBs as a function of birthweight percentile [46], and to
detect associations between RRBs and dysregulation and
internalizing symptoms [30] in toddlers. For distribu-
tions of RBS-EC scores in the present sample, see Figure
S1 in the Online Supplement. Each item contributes to 2
measures: items endorsed (binary) and frequency score
(0-behavior does not occur, 1-behavior occurs about
weekly or less, 2-behavior occurs several times a week,
3-behavior occurs about daily, and 4-behavior occurs
many times a day). These measures can be summed into
an overall composite measure (scored 0-34) or disaggre-
gated into 4 psychometrically validated subscale scores:
repetitive motor (scored 0-9), ritual and routine (scored
0-10), restricted behavior (scored 0-8), and self-directed
behavior (scored 0-7). See http://www.cehd.umn.edu/
edpsych/research/resources/rbs-ec/ for access to the
instrument.

Analytic plan
Factor structure
Visual inspection of distributions of item frequency re-
sponses (ranging from 0-4) indicated that responses
were highly skewed—typically captured by 2 values of 0-
4 scale. We therefore collapsed across empty cells by
converting each item response to a binary scale based on
median splits (scores ≤ the median were coded as 0,
scores > the median were coded as 1). Descriptive statis-
tics on item responses can be found in Supporting infor-
mation (Table S1).
To establish configural longitudinal invariance, we first

fit CFAs to two discretized age bins split at 17 months
(mean age of younger group = 12.1 months (2.4), mean
age of older group = 22.6 months (4.9)) (i.e., [6]) to con-
firm that there were separable unitary factors that items
from the RBS-EC loaded on to. Repetitive behavior is
not typically characterized as a singular, encapsulated
construct. Rather, any meaningful characterization of re-
petitive behavior acknowledges that there are at least
two factors that define/represent this category of

behavior (e.g., lower-order and higher-order RRBs, see
[51, 52]) and depending on the sample, measurement/as-
sessment, and analytic decisions, there may be more [7,
28, 34, 37, 38, 48]. Informed by prior validation work
with a sample of 17- to 27-month-olds [56], we fitted a
model comprising four correlated latent factors tapping:
repetitive motor, ritual and routines, restricted interests,
and self-directed behavior. Items on the repetitive motor
latent factor measure repetitive and non-social motor
stereotypies; items on the self-directed latent factor
measure repeated movement directed toward the body,
including self-injury and proto-self-injury; items on the
ritual and routine measure resistance to change and
insistence on sameness; and items on the restricted in-
terests measure intense or unusual interests or activities
(see Online Supplement for a complete list of items). Al-
though model fit was reasonable for the 4-factor model
for both age groups (group 1: Χ2 = 542, p = 0.0036,
RMSEA = 0.026, CFI = 0.979; group 2: Χ2 = 512, p =
0.04; RMSEA = 0.019; CFI = 0.991), there was an
indication that two of the factors—restricted interests
and rituals and routines—were so highly correlated
(group 1 φ = 0.872, group 2 φ = 0.777) that they were
functionally inseparable. As such, we collapsed these
subscales into a single factor called “Higher-order,”
where indicator residual covariances were freely esti-
mated. Both CFAs showed good model fit (group 1 Χ2 =
572, p < 0.001, RMSEA = 0.029, CFI = 0.972; group 2 Χ2

= 572, p < 0.001, RMSEA = 0.027, CFI = 0.981).

Moderated nonlinear factor analysis
We used MNLFA to determine whether the RBS-EC has
MI and to statistically account for any non-invariance.
We were mainly concerned with longitudinal MI (i.e.,
whether the measurement is invariant across different
ages), and used MNLFA to simultaneously determine
how age as a continuous variable impacts RBS-EC latent
scores, as well as its impact on DIF. Because of our two-
cohort design, we also tested moderating effects of
cohort, and the interaction between cohort and age since
the interpretation of a main effect of age rests on the
assumption that slopes do not differ between the two
cohorts. Finally, we tested for moderating effects of sex,

Table 1 Descriptive information on study sample. Ages are reported in months

Cohort N participants N sessions Sessions/participant
Mean (SD)
[Range]

Age at first visit
Mean (SD)
[Range]

Average age of participants
Mean (SD)
[Range]

A 110
(52 female)

424 3.85 (1.5)
[1,7]

11.0 (3.8)
[7.4, 32.1]

17.2 (3.9)
[ 9, 35.3]

B 70
(40 female)

182 2.6 (0.8)
[1,3]

13.8 (3.2)
[8.8, 19.3]

18.5 (1.2)
[14.4, 22.1]

Combined 180
(92 female)

606 3.37 (1.4)
[1,7]

12.12 (3.8)
[7.4,32.1]

17.7 (3.2)
[9, 35.3]
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given past findings on sex-related differences in RRBs
[56]. Specifically, we conducted our analyses using a
slightly modified version of Gottfredson and collegues’
[21] aMNLFA package for R. The aMNLFA package
functions as a visualization and parameterization pipe-
line that works with the Mplus [42] statistical program
to iteratively estimate the models we detail below.
For longitudinal data, MNLFA first estimates the

model parameters on a calibration sample drawn from
independent observations (n = 180). All significant
moderators on the mean and variance of the latent con-
struct (η) and on DIF are combined into a final model,
which is then used to estimate factor scores for the full
longitudinal sample. All models were run on two inde-
pendent calibration samples to test for model stability.
Independent observations were pseudo-randomly
selected, while attempting to ensure a similar age distri-
bution to the full longitudinal sample (sample 1 mean
age = 18.07, SD = 6.37, sample 2 mean age = 17.66
months, SD = 6.08), resulting in a 36% overlap between
the two calibration samples.
Each of the three latent subscales of the RBS-EC

(repetitive motor, self-directed, and higher-order RRBs)
were modeled separately. First, we modeled the effect of
moderators (age, sex, cohort, and age×cohort) on the
latent construct (η). Only age was tested as a moderator
on the latent variance estimates, as suggested by past
literature [13]. For this initial step, model parameters
with p < 0.1 were retained. Next, we modeled the effect
of moderators on DIF (e.g., measurement artifact intro-
duced by predictors) for each indicator intercept and
loading, in the presence of moderators on the latent fac-
tor mean.
Based on the results of the initial impacts and DIF

model, model parameters were then trimmed such that
all effects (moderator effects on the latent mean and
variance, and on DIF) with p < 0.05 were retained. The
surviving impact and DIF effects were then tested simul-
taneously in one model. At this stage, Benjamini-
Hochberg family-wise error correction was applied to all
model parameters to protect against type I errors. Lastly,
a final model was estimated using the parameters that
survived the Benjamini-Hochberg correction. That
model was then used to estimate the factor score esti-
mates in the full longitudinal sample (n = 606), yielding
person- and visit-specific estimates of η for each latent
subscale which reflect the weighted estimates of each in-
dividual’s latent score, as well as the effects of significant
moderators on DIF and η mean and variance.

Longitudinal analyses
MNLFA provides individual factor score estimates for
each RBS-EC subscale adjusted for individual differences
in moderating factors such as age. While MNLFA

provides estimates of moderator effects on η, using these
scores as outcomes in a multi-level model allows for the
estimation of both between- and within-person effects of
age. To test normative and individual differences in chil-
dren’s RRB growth rates, we fitted taxonomies of growth
models to each of the respective RRB subscales, moving
systematically across linear and polynomial specifications
of time. We subsequently added sex and cohort to
model, to test for interactions with RRB growth rates.
Any non-significant effects were dropped from the final
model. Complete information on model comparisons for
all subscales can be found in Tables 4, 5, and 6. Model
comparisons were conducted using chi-square log-
likelihood ratio tests and second-order Akaike Informa-
tion Criteria (accounting for sample size and model
complexity). All models were fitted using the lme4 and
LmerTest package [5] in R 3.31.
For descriptive purposes, we fitted these models using

both the MNLFA-derived factor scores and the raw-
mean scores. Results for raw-mean scores can be found
in the Online Supplement (Tables S2-S4). However, it
should be noted that because these variables are on
different scales, absolute quantitative comparisons are
impossible. Indeed, the different scales between the
MNLFA-derived factor scores (i.e., interval scaled) and
the raw-mean scores (i.e., proportion scale) required
different modeling approaches—general linear mixed
models versus generalized mixed models (logistic link),
respectively.

Results
MNLFA results
The final MNLFA model results on the structural rela-
tion between moderators and latent factor means and
variances can be found in Table 2, and the final results
on DIF can be found in Table 3. Overall, age was the
only significant moderator of these structural models,
and of item functioning. Items associated with motor
ability (e.g., lines up or arranges toys or other objects)
tended to be endorsed more frequently as infants got
older, while items such as “mouths, bites, licks, or sucks
objects” were endorsed less frequently with age, reflect-
ing changes in the developmental appropriateness of
such behaviors. Of note, higher-order items that index
intense focus with objects (e.g., focuses on parts of objects
rather than the whole object) were also endorsed less fre-
quently with age.
MNLFA-derived factor score estimates for the

longitudinal sample approached unity across the two
separate calibration samples used for all three subscales
(repetitive motor r = 0.99, self-directed r = 0.99, and
higher-order r = 0.98, all p’s < 0.001), demonstrating that
factor score estimates were not dependent upon the
calibration sample used. MNLFA-derived factor scores
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were highly correlated with raw mean scores for all three
subscales (repetitive motor (r = 0.93), self-directed (r =
0.96), and higher-order (r = 0.96) behaviors, all p’s <
0.001) However, as illustrated by Figs. 2 and 3, the
MNLFA-adjusted factor scores provided considerably
greater variability than the unadjusted mean scores, be-
cause scores adjust for individual-level factors that influ-
ence the degree of variation [13].

Age-related change in restricted and repetitive behaviors
Repetitive motor
Likelihood ratio tests of nested models and AIC compar-
isons indicated that the longitudinal MNLFA-derived
factor scores for repetitive motor behavior were best
represented by a linear growth function (Fig. 4). On
average, children showed linear declines in their repeti-
tive motor behaviors (ΒAge = −0.11, p < 0.0001) between
8 and 37 months of age. Scaling on the within-person
variance, this corresponds to an approximate 3.0 SD de-
crease across this span. Notably, a statistically significant
random linear slope also indicated noteworthy individual
differences in children’s growth rates, around this mean

trajectory (Δ−2ll = 19.1, Δdf = 2, p < 0.0001). Subse-
quent models indicated that the cohort was not predict-
ive of differences in children’s intercepts (BCohort = 0.13,
p = 0.2) or growth rates (B = −0.02, p = 0.13), so it was
not included in the final model. Sex was predictive of
differences in children’s intercepts (Bsex = 0.21, p =
0.04), and of growth rates (B = −0.034, p = 0.001) (Fig.
4); girls had slightly lower repetitive motor behaviors at
18 months and showed a more rapid decline in these be-
haviors than did boys. Collectively, the final model in-
cluding linear age, sex, and an age×sex interaction
accounted for approximately 39% of the variance in re-
petitive motor behavior (R2 = 0.398%). See Table 4 for
full model results.

Self-directed
MNLFA-derived factor scores for self-directed behav-
iors were best represented by a linear growth function
(Fig. 5). On average, children showed linear declines in
their self-directed behaviors (ΒAge = −0.06, p < 0.0001) be-
tween 8 and 37months of age. Scaling on the within-
person variance, this corresponds to an approximate 2.14
SD decrease across this span. Neither cohort nor sex was
predictive of differences in children’s intercepts (BCohort =
0.07, p = 0.4; Bsex = 0.015, p = 0.86) or growth rates (BAge×-

Cohort = −0.007, p = 0.5; BAge×Sex = 0.009, p = 0.27).
Collectively, the final model including linear time
accounted for approximately 17.6% of the variance in self-
directed behavior (R2 = 0.176). See Table 5 for full model
results.

Higher-order repetitive behavior
The longitudinal MNLFA-derived factor scores for
higher-order behaviors were best represented by a quad-
ratic growth function (Fig. 6). On average, children
showed a slight decline in their higher-order behaviors
at around 18months (Bage = −0.002, p = 0.7; Bage2 =
−0.002 p = 0.0001). Scaling on within-person variance,
this corresponds to a 0.06 SD decrease from 18 to 37
months. A statistically significant random linear slope

Table 2 Results from final MNLFA model testing covariate
effects on factor mean and variance

Covariate Effect Estimate (SE) t p

Repetitive-Motor

Factor Mean

Age -0.107 (0.017) -6.334 0.000

Factor Variance

Age 0.068 (0.023) 2.908 0.004

Self-directed

Factor Mean

Age -0.054 (0.016) -3.436 0.001

. . .

Higher-order

Factor Variance

Age 0.043 (0.019) 2.223 .026

Table 3 Items for which there was a significant loading DIF as a function of the covariate age

Item Loading DIF (SE)

Repetitive Motor

Mouthing Objects - mouths, bites, licks, or sucks objects -0.147 (0.047)

Higher-order

Arranging – lines up or arranges toys or other objects 0.214 (0.043)

Placement of objects – insists that things remain in the same place 0.152 (0.045)

Restricted use of media – strongly insists on the same music, book, app, program, movie, etc. 0.109 (.037)

Preoccupation with parts of objects – focuses on parts of objects rather than the whole object -0.303 (0.074)

Visual inspection – closely inspects objects, views toys and other objects from an unusual angle -0.145 (0.039)

Fascination with movement – intense interest or preoccupation with things that move, e.g. fans, clocks) -0.261 (0.058)
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also indicated noteworthy individual differences in chil-
dren’s growth rates, around this mean trajectory (Δ−2ll
= 11.46, Δdf = 2, p < 0.0001). Subsequent models indi-
cated that cohort was not predictive of differences in
children’s intercepts (Bcohort = 0.08, p = 0.5) or growth
rates (B = 0.007, p = 0.54), so it was not included in the
final model. Sex was not predictive of differences in chil-
dren’s intercepts (B = 0.19, p = 0.08), but was predictive
of linear growth rates (B = 0.024, p = 0.01) (Fig. 6); while
boys and girls had similar higher-order behaviors at 18
months, girls showed a slight decline in these behaviors,
while boys stayed flat. Collectively, the final model in-
cluding linear and quadratic age, sex and an age×sex
interaction accounted for approximately 74% of the

variance in higher-order behaviors (R2 = 0.74). See Table
6 for full model results.

Value added
What if we had simply used the unadjusted mean
scores, as opposed to the MNLFA-adjusted factor
scores? As noted, the correlations between the un-
adjusted mean scores and MNLFA-adjusted factor
scores were very strong. However, failing to account
for longitudinal non-invariance led to some non-
trivial differences in longitudinal trajectories. Most
notably, when using raw unadjusted scores the ob-
served decline in repetitive motor (Fig. 4) and self-
directed behaviors (Fig. 5) flattened out over time

Fig. 2 Correlation between raw mean scores and MNLFA factor scores (ETA) for (a) repetitive motor (r = 0.94), (b) self-directed (r = 0.96), and (c)
higher-order (r = 0.96) behaviors (all p’s < 0.001)
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(full model results can be found in the Online supple-
ment). This may be because modeling the bounded
and right-skewed raw-mean data for these subscale
results in a floor-effect for the older toddlers. Further
issues arise when modeling raw unadjusted scores
that afford limited variance. For example, for the re-
petitive motor subscale, the model failed to converge
when we attempted to test for the effect of sex and

cohort on intercept and growth rate, suggesting that
with the limited variance afforded by proportion
scores, only a limited number of parameters could be
included in the model. For the self-directed subscale,
non-significant random effects for the instantaneous
linear slopes indicated that all children showed statis-
tically identical growth rates.

Fig. 3 Distributions of MNLFA-derived factor scores (top) and raw-mean scores (bottom) for (a) repetitive motor, (b) self-directed, and (c)
higher-order behaviors
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Fig. 4 (See legend on next page.)
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Similarly, failing to account for longitudinal non-
invariance and adopting the bounded and right-skewed
raw-mean higher-order behavior scale led to some non-
trivial differences in children’s higher-order growth
trajectories, as compared with invariance-adjusted
MNLFA scores (Fig. 6). In this case, the best-fitting
model for the raw mean scores included only fixed and
random effects of intercept, and we were unable to de-
tect either within- or between-person growth effects.

Discussion
The goal of the present study was to characterize
normative rates of RRBs and their subsequent change
over time in a large longitudinal community sample
of toddlers. We tested longitudinal MI in the RBS-EC

in order to examine the extent to which our con-
structs (repetitive motor, self-directed, and higher-
order behaviors) were commensurate across child
demographic covariates (age and sex). We found no
differences in the meaning of scale (i.e., non-
invariance) due to sex. However, there were some dif-
ferences as a function of age, with the higher-order
subscale showing the most evidence of DIF. Interest-
ingly, many of these items describe unusual objects
and visual exploration (e.g., focuses on parts of objects
rather than the whole objects, closely inspects objects,
lines up or arranges toys). Past work has shown that
unusual object and visual exploration at 12-months is
associated with subsequent autism severity scores
[43], suggesting that these items may be useful for

Table 4 Table of model evidence for predicting repetitive motor MNLFA scores. The best-fitting model (model 4) included linear
fixed and random effects of slope (age), as well as a significant effect of sex of on the intercept and slope

(See figure on previous page.)
Fig. 4 Best-fitting model estimates for Repetitive Motor scores plotted over raw data for (a) MNLFA-derived factor score estimates and (b) raw
mean scores. The model outcome for the raw mean score is converted to probability, as a logistic linking function was used. Y-axes for both
plots are scaled with limits of mean outcome +/− 2.5 SDs. c Impact of sex on intercept and slope. Parents of females reported fewer repetitive
motor behaviors at 18 months, and their rate of decline was more rapid relative to males
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predicting emerging atypicalities during a specific de-
velopmental window. However, past work has also
demonstrated low rates of similar behaviors in 2-year-
olds with ASD and non-spectrum developmental dis-
orders [45], suggesting that they may be challenging
to measure in the first years of life regardless of diag-
nostic group. Thus, future work comparing the trajec-
tories of these behaviors between ASD and TD
children must be careful to adjust for DIF both as a
function of age and diagnostic status. Crucially,
MNLFA scores adjust for DIF and therefore generate
more precise estimates of these constructs.

Our model results indicate that RRB subscales have
differing developmental trajectories, which in part vali-
dates their utility as separable constructs [7, 33, 51].
Self-directed behaviors showed a linear decrease from 8
to 36months, as did repetitive motor behaviors which
showed a slower decline in boys relative to girls. These
findings corroborate past longitudinal work showing a
decline in repetitive and sensory-motor behaviors begin-
ning at 15 months, as well as higher rates of these behav-
iors in boys beginning at 15 months that becomes
statistically higher than girls by 77 months [53]. We
found that higher-order behaviors begin to decline later

Fig. 5 Best-fitting model estimates for self-directed scores plotted over raw data for (a) MNLFA-derived factor score estimates and (b) raw mean
scores. The model outcome for the raw mean score is converted to probability, as a logistic linking function was used. Y-axes for both plots are
scaled with limits of mean outcome +/− 3 SDs

Sifre et al. Journal of Neurodevelopmental Disorders            (2021) 13:7 Page 12 of 18



in development relative to lower-order behaviors, also
corroborating past cross-sectional [18] and longitudinal
work [53].
Of note, our work is the first to longitudinally

measure RRBs beginning in the first year of life. Past
work has raised the possibility of using parent reports
of RRBs to augment early screening for ASD [55],
and characterizing these early behavioral trajectories
in typically developing children is a critical first step
toward understanding when and how they deviate
from their ASD counterparts. By using the RBS-EC,
we were able to measure age-related declines in self-
directed behaviors, which may prove especially
important in distinguishing between clinical and de-
velopmentally normative presentations of RRBs.

Conclusions
Why use MNLFA scores to examine rates of RRBs, as
opposed to raw mean scores? First, adjusting for DIF
due to individual differences in age provided us with

more within-person variability to model within-person
changes in RRBs. This has potential implications for
measuring behavioral change over time in treatment and
intervention studies, beyond RRBs. Many have argued
for the importance of outcome measures that are sensi-
tive enough to capture subtle within-person change for
assessing treatment outcomes (e.g., [27]). We argue in
addition to the sensitivity of the measure itself, using
scores that adjust for DIF confers the additional benefit
of increasing within-person variability when measuring
individual treatment outcomes or efficacy.
Second, these scores disentangle measurement bias in-

troduced by age and true changes in the latent construct
over time, allowing us to more accurately estimate their
developmental trajectories. This may be particularly im-
portant in follow-up work examining group differences
between ASD and TD toddlers in these trajectories, as
DIF due to age may interact with DIF due to risk status.
For example, in the present study, we found that items
associated with routinized play (e.g., lines up or arranges

Table 5 Table of model evidence for predicting self-directed MNLFA scores. The best-fitting model (model 4) included a linear fixed
effect of slope (age). Neither sex nor cohort were included in the final model
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Fig. 6 Best-fitting model estimates for higher-order scores plotted over raw data for (a) MNLFA-derived factor score estimates and (b) raw mean
scores. The model outcome for the raw mean score is converted to probability, as a logistic linking function was used. Y-axes for both plots are
scaled with limits of mean outcome +/− 4 SDs. c Effect of sex on slope. The decline in higher-order scores was driven by females
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toys or other objects) tended to be endorsed more fre-
quently as infants got older. It is likely that this item
functions differently in populations with neurodevelop-
mental disorders, in addition to DIF due to age. When
comparing behavioral trajectories in TD and ASD in-
fants, we must have a clear understanding of the under-
lying factor structure and be able to statistically adjust
for biases in our measures due to diagnostic group and
age for this information to be interpretable. Validity and
reliability are not inherent attributes of an instrument
but are inextricably linked to the sample in which they
were established. Indeed, establishing MI is essential in

order to avoid what Meehl referred to as “detached val-
idity claims” [35], in which instruments psychometrically
verified in one sample or at one age are assumed to
function similarly in other samples or ages of children.
The implications of such assumptions are broad and po-
tentially costly. Thankfully, with recent simplifications in
the implementation of MNLFA [21], researchers can ad-
just for non-invariance more easily than ever.
Adjusting for non-invariance is critical when compar-

ing a latent construct over time or between groups, how-
ever, we are still limited in our ability to make causal
inferences. Though we identified DIF as a function of

Table 6 Table of model evidence for predicting higher-order MNLFA scores. The best-fitting model (model 4) included a quadratic
fixed effect and linear random effect for slope (age), and a significant effect of sex on intercept and slope
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age, a third variable correlated with age such as language
development could be driving these effects. For example,
past work has shown that early changes in RRBs are as-
sociated with developmental factors such as language
and socio-cognitive development [19, 29, 32]. Multivari-
ate analyses using latent factor scores adjusted for non-
invariance for RRBs and covariates of interest are needed
to further understand the interplay of these factors
across development.
In sum, this paper provides foundational evidence of

the developmental trajectories of RRB sub-types among
typically developing children. We found that adjusting
for non-invariance as a function of age provided more
accurate estimates of developmental trajectories by en-
suring that factor score estimates were placed on the
same developmental scale. Future work will test the in-
variance of these metrics in a sample enriched for ASD
risk and will consider the role of language and cognition
in RRBs across the typical-to-atypical continuum.
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