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Infants’ gaze exhibits a fractal 
structure that varies by age 
and stimulus salience
Isabella C. Stallworthy 1,4*, Robin Sifre1,4, Daniel Berry1,4, Carolyn Lasch 1, Tim J. Smith2 & 
Jed T. Elison 1,3

The development of selective visual attention is critical for effectively engaging with an ever-changing 
world. Its optimal deployment depends upon interactions between neural, motor, and sensory 
systems across multiple timescales and neurocognitive loci. Previous work illustrates the spatio-
temporal dynamics of these processes in adults, but less is known about this emergent phenomenon 
early in life. Using data (n = 190; 421 visits) collected between 3 and 35 months of age, we examined 
the spatio-temporal complexity of young children’s gaze patterns as they viewed stimuli varying in 
semantic salience. Specifically, we used detrended fluctuation analysis (DFA) to quantify the extent to 
which infants’ gaze patterns exhibited scale invariant patterns of nested variability, an organizational 
feature thought to reflect self-organized and optimally flexible system dynamics that are not overly 
rigid or random. Results indicated that gaze patterns of even the youngest infants exhibited fractal 
organization that increased with age. Further, fractal organization was greater when children (a) 
viewed social stimuli compared to stimuli with degraded social information and (b) when they 
spontaneously gazed at faces. These findings suggest that selective attention is well-organized in 
infancy, particularly toward social information, and indicate noteworthy growth in these processes 
across the first years of life.

Visual attention. We deploy gaze in a dynamic fashion, fixating objects and people for sometimes many 
seconds at a time while also exhibiting oculomotor activity on the order of milliseconds. Human visual attention 
reflects the complex integration of information across an array of  systems1. From a dynamic systems perspective, 
this real-time integration is thought to reflect the ‘soft assembly’ of neural, motor, and visceral processes, where 
the collective functioning of the system is an emergent (i.e., self-organized) property of its highly interactive 
constituent  parts2–4. Specifically, by ‘highly interactive’ we mean that the role of each constituent component can 
only be understood in the context of its functioning with the other components of the  system3.

The visual attention system develops rapidly on multiple timescales during infancy and toddlerhood and 
involves both bottom-up (i.e., stimulus-driven) and top-down (i.e., internally driven) influences. Infants are 
born with a rudimentary capacity for alertness, which is driven mainly by exogenous events and supported by 
primarily subcortical neural pathways and increases significantly within the first couple months of  life5. Spatial 
orienting and attention disengagement abilities establish by around 6 months of age, along with the emergence 
of attention to features of objects and anticipatory eye  movements6. Finally, in the latter half of the first year of 
life extending through about age 3 years, more endogenous volitional attention develops, including attentional 
inhibition abilities and more focused  looking5.

Infants do not attend to all aspects of their surroundings equally—past work has elucidated adaptive predispo-
sitions to visually engage with social features in the environment such as  faces7 face-like  stimuli8, and biological 
 motion9. Faces are especially salient beginning moments after birth and attention to faces becomes more refined 
with experience and the development of cortical  influence10. Social features continue to capture attention within 
the first year of  life11 and throughout the preschool years in increasingly sophisticated  ways12.

In short, the burgeoning visual attention system is dynamic, multidimensional, and sensitive to context. 
It encompasses many interacting sub-components with different organizational structures as well as many 
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functional and developmental  timescales13,14. As such, the development of this system must be considered with 
respect to its interaction-dominant, non-linear  organization15. Researchers have long recognized the importance 
of examining the temporal processes of visual attention development, as it can reveal new information about 
the relationship between global average looking times and the processes that give rise to them (e.g.,16). Despite 
this qualitative observation, little work has quantified the dynamic organization of infants’ gaze behavior (with 
the exception  of17). The current study fills this gap using a dynamic mathematical approach that is particularly 
well-suited for quantifying interaction-dominant emergent  phenomena18.

Fractal organization. Given the complexity of the developing visual system, we utilized time-series fractal-
ity, an increasingly common approach for characterizing the multiscale organization of complex, psychobiologi-
cal  processes19. Fractal structures are characterized by nested patterns of variability that are scale-invariant, i.e., 
apparent across multiple measurement  scales20, resulting in a self-similarity over time. These structures result 
from simple local rules that interact to produce highly complex, dynamic organizational  structures21. Fractal 
organization is ubiquitous in nature (e.g., in mountain ranges and  riverbeds22) and human physiology (e.g., 
cardiac  anatomy23), and is thought to be a critical feature of healthy cognitive and psychobiological  systems24–26.

Mathematically, fractal structures reflect a proportional relationship between the power (i.e., size of change) 
and the frequency (i.e., how frequently changes of that size occur) of variation within a time-series20. This relation 
suggests self-similarity and scale-invariance, such that the variability observed for the system’s behavior will be 
proportionally identical, irrespective of the length of the overall scale. In other words, the pattern of variability 
should look the same as one magnifies the resolution in and out of increasingly micro- or macroscopic temporal 
scales.

The extent to which a time-series is characterized by this proportional ideal is commonly discussed with 
respect to the color of the time-series organization (Fig. 1A). Here, the theoretically optimally proportional rela-
tion between power and frequency of time-series variation is known as pink  noise27. In the frequency domain, 
this corresponds to a negative relation of 1, on a log–log scale (Fig. 1B). Pink noise gets its name from the fact 
that its variability falls in the middle of a continuum of noises—white to red—in which scale units correspond 
to mathematical organization of the series to reflect the underlying organizational structure of the system. The 
‘power law’ relation of pink noise that approaches perfect proportionality implies self-similarity, scale invariance, 
and autocorrelation functions indicating long-term  memories28.

Given these properties, pink noise organization is considered to be optimal as it is thought to reflect system 
dynamics that are highly self-organized, yet also flexible to change given that its structure is not overly rigid or 
random. ‘Self-organized’ refers to the property through which dynamic systems exhibit organizational structures 
that are not driven by any one subcomponent or lower level of cause and  effect34,26. States of a system may be 
shaped by control parameters but cannot be reduced to them. In biological systems, self-organization may coordi-
nate the many bodily processes across  timescales26. Self-organization is thought to require interaction-dominant 
dynamics, through which local interactions heavily influence each other (as opposed to more individual more 
component-dominant dynamics), thereby producing statistically self-similar patterns of variability, such as those 
as indexed by fractal metrics.

Figure 1.  (A) Sample time-series and (B) the relationship between power and frequency for pink noise shown 
in pink; white noise shown in grey; and brown noise shown in brown.
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At the low end of the noise distribution, white-noise time-series (or fractional Gaussian  noise27) reflect com-
pletely random variation; changes of all sizes occur at the same frequency and share no relation to the other 
observations of the  series20. Given the lack of self-similarity, scale-invariance, or memory in the system, white 
noise is thought to reflect systems lacking internal organization.

At the opposite end of the distribution, red noise—more commonly called brown noise or fractional Brown-
ian motion—is characterized by time-series in which each observation represents a random change from the 
prior observation. Red/brown noise represents the integration of a white-noise series, such that it comprises the 
cumulative sum of the random white-noise shocks. As such, each observation contributes information to the 
entirety of the subsequent observations, leading to an ‘infinite memory’ in the system, in which autocorrelation 
remains the same, irrespective of the temporal lag between observations. This infinite memory is thought to 
reflect the behavior of systems that are highly constrained and rigid to change.

Fractal dynamics of cognitive processes. Thus, collectively, fractal structure is thought to reflect the 
coordination of multiple interacting systems organized in an optimally flexible way (pink noise), without being 
too rigid (brown noise) or too random (white noise). Empirically, pink noise organization has been found for 
an array of cognitive tasks and modalities in adults—response times during shape  discrimination24, mental rota-
tion and  translation29, bi-stable  perception18, word  naming26, and simple stimulus  detection30; tracing patterns 
during forced-trace problem-solving31 and circle-drawing32, as well as eye movements during free  viewing33, 
challenging visual  search34, and text  reading35.

Conversely, white noise variation has been found for time-series of gaze patterns that have been randomly 
shuffled (i.e., preserving the time-series values but disrupting their temporal  relations20) and for the non-bio-
logical simulated “fixations” produced by a fake  eye20. Further, relatively whiter noise has been found to be a 
marker of systems operating under more unpredictable constraints, for example when instructed to avoid previ-
ous cognitive  biases36, while straining working  memory37, or engaging in multi-tasking38. Both white and brown 
noise are also characteristic of aging and pathophysiological  systems39,40.

The current study. The current study employed fractal metrics to quantify the self-organization of infants’ 
gaze patterns over time and space throughout the first 3 years of life. Given the importance of context in shap-
ing dynamic attention systems, participants (N = 190, age 3–35 months) watched movies of varying degrees of 
salience while an eye-tracker recorded their eye-movements: movies of women dancing to lively music while 
waving toys, versions of these videos in which the social information was pixelated, and brief presentations of 
dynamic audio-visual attention cues to serve as a baseline.

We used Detrended Fluctuation Analysis  (DFA19,41; see “Methods”) that produces a scaling exponent, α, 
representing the proportional relation between patterns of variation within a time-series across a wide array 
of potential timescales (i.e., time segments of different lengths). Given the proportional properties of log–log 
relations, pink noise is indicated to the extent to which this relation approaches 1 on a log–log scale. That is, pat-
terns of variability are proportionally identical, irrespective of timescale. Pink noise sits on a continuum between 
white noise (α ~ 0.5) and brown noise (α ~ 1.5), with white noise characterizing systems lacking organization, 
and brown noise characterizing overly rigid and deterministic systems.

We calculated α values from time-series created from infants’ raw eye-gaze data over time and space (see 
“Methods”) as they viewed the different movies. We then examined age-related change in overall α values, as 
well as changes in α values as a function of stimulus content across these three conditions (Social, Pixelated, 
Attention Cue).

Hypotheses regarding the fractal organization of gaze. We propose three hypotheses regarding 
the development of gaze complexity within the first 3 years of life. First, given past work suggesting that healthy 
physiological systems exhibit organizational structure within the pink noise  range42, as well as evidence that 
adults’ gaze patterns have an underlying pink  noise15,20,34,43, we hypothesized that infants’ gaze patterns would, 
on average, be within the optimally flexible fractal range (pink noise, α ~ 1).

Second, we hypothesized that infants’ gaze patterns would become increasingly complex over the first 3 years 
of life (as indexed by an increase in α within the pink noise range), reflecting known developmental advances in 
the visual attention system (e.g., increased oculomotor control, ability to suppress orienting to salient periph-
eral stimuli, production of anti-saccades, and recruitment of top-down executive control  functions5,13,14). We 
reasoned that these advances require increased coordination between systems, which should be reflected by a 
fractal organization of gaze patterns increasingly closer to pink noise values (i.e., α ~ 1).

Our third hypothesis concerns change in the fractal structure of gaze as a function of context. Given the 
ubiquity of pink noise, the interpretability of findings relies on specific predictions of how α should change as 
a function of task  constraints26. Past work with adults has suggested that fractal structure might reflect aspects 
of vigilance and task  engagement24–26. While measuring engagement in infants is challenging, past work has 
demonstrated that infants’ have strong attentional preferences to faces beginning moments after  birth44, and that 
this preference persists through the first years of  life45,11. Thus, we hypothesized that the infant visual system may 
be tuned to be especially organized and flexibly responsive—evidenced by relatively more self-organized fractal 
structure—while viewing movies in the Social condition and while attending to faces within the movies (e.g., 
stimuli known to be engaging). We employed linear mixed effects models to test the above hypotheses, with the 
α values for each gaze-based time-series as our primary dependent variable.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17216  | https://doi.org/10.1038/s41598-020-73187-w

www.nature.com/scientificreports/

Results
Fractal organization of the infant visual system. Scaling exponent α values were approximately nor-
mally distributed (skew = 0.11, kurtosis = 4.22), with a mean of 0.84 range 0.12–1.34. The kurtosis value is within 
the range of a normal distribution for large sample  sizes46. Ninety-one percent of the time-series across all 3 
conditions fell within what is thought to be the optimally flexible fractal, pink noise range (α ~ 0.7 to 1.019,20). 
The average  R2 values for the linear model fit to the relations between log(frequency) and log(power) was 0.985 
(interquartile range 0.01), suggesting that a linear power-law provided good model fit.

Age-related change and effects of stimulus type on gaze complexity. Our baseline linear mixed 
effects model found that α values increased significantly with age (Δ-2LL = 21.1, Δdf = 1, p < 0.001) by about 
0.0022 units a year (remaining within the pink noise range). Age alone predicted about 2.3% of the total variance 
in α values. Even the youngest infants in our sample (3-month-olds) demonstrated gaze patterns in the range 
typically considered to imply fractality (α = 0.79).

After adding a series of quality-control covariates to account for the quality of the data and eye-tracking 
recording (as detailed in “Methods”), we assessed the effects of stimulus condition on α values. Our best-fitting 
model indicated that, on average and irrespective of age, α values were 0.023 units lower (10% of a SD, i.e., less 
organized) while infants were watching Pixelated movies (Δ-2LL = 4.6, Δdf = 1, p = 0.0024), and 0.030 units lower 
while infants watched the audio-visual attention cues (Δ-2LL = 7.8, Δdf = 1, p < 0.001), compared to when they 
were watching the Social movies. There were no significant differences in α values between the Pixelated and 
audio-visual attention cues (p = 0.21).

A significant Condition x Age interaction (Δ-2LL = 6.7, Δdf = 1, p < 0.001; as shown in Fig. 2) indicated that 
growth in the fractal organization of infants’ eye gaze differed across stimulus type. Tests of the simple slopes sug-
gested that positive growth was limited to the Social and Pixelated conditions (i.e., Social b = 0.0013, p = 0.0024; 
Pixelated b = 0.0010, p = 0.018; Attention Cue b = 0.00014, p = 0.78). We found a significantly greater rate of 
growth in α for the Social condition compared to the Attention Cue condition (Δ-2LL = 6.7, Δdf = 1, p < 0.001 
while differences in the growth trajectories of α between the Pixelated and Attention Cue condition were non-
significant. The rate of growth in α was comparable between Pixelated and Social conditions. The final model, 
Model 7 shown in Table 1, accounted for 18.36% of the total variance in α values.

Visual complexity and gaze to faces. Multi-level logistic regression was used to examine whether gaze 
location, assigned to either a face or non-face region of the display, varied between the Pixelated and Social 
movies. All models were fit using the Social condition as the reference event. Our baseline model found that 
probability of face-looking increased significantly with age (Δ-2LL = 96,983, Δdf = 3, p = 2.2 × 10–1), by about 
50% each month. After adding a series of quality-control covariates to account for the quality of the data and 
eye-tracking recording (as detailed in “Methods”), we assessed the effects of stimulus condition on face-looking. 
Our best-fitting model indicated that, as expected, infants spent less time fixating on face regions during the 
pixelated condition (B = − 1.71, a 15.3% reduced probability of looking at faces, all else equal), compared to the 
same facial location during the social condition (Δ-2LL = 441,108, Δdf = 4, p = 2.2 × 10–16). Finally, a significant 
Age x Condition interaction indicated that this age-related change was seen primarily in the social condition 
(Β = − 0.004, Δ-2LL = 59, Δdf = 1, p = 2.2 × 10–16).

In addition to developmental changes in face-looking, we were interested in examining whether spontaneous 
changes in face-looking would correspond with changes in infants’ gaze complexity. To test this, we specified 

Figure 2.  Age-related increase in α values (reflecting increased fractal organization of gaze patterns) by the type 
of stimulus being viewed.
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a second set of linear mixed effects models to examine whether, in addition to the effects of age and condition, 
there was a significant effect of the proportion of time spent fixating on faces on α. Only gaze data from the 
Social and Pixelated trials were included in these analyses, as there was no equivalent Area of Interest (AOI) in 
the Attention Cue trials.

Our best fitting model indicated that on average, α values increased as a function of face-looking (Δ-2LL = 13.3, 
Δdf = 4, p = 0.00002) (see Table 2 for full model results). This effect was significant at all levels (i.e. average face-
looking at the segment, movie, visit, and person level). This effect of within-visit face-looking on α did not vary as 
a function of age. Log-likelihood testing indicated that adding a Face-Looking × Condition interaction term did 
not significantly improve model fit relative to a model with Face-Looking alone (Δ-2LL = 2.7, Δdf = 4, p = 0.25).
Model results overlaid on raw data can be found in Fig. 3. 

Discussion
The current study demonstrates that the developing visual attention system is dynamic and self-organized as early 
as 3 months of age. We observed these effects using DFA to elucidate the organization of infants’ gaze patterns 
across time and space. We show that infants’ gaze becomes more fractally self-organized over developmental 
time, when they are watching stimuli with social content, and when they spontaneously attend to faces.

Our findings support past empirical and theoretical work suggesting that fractal structure is a fundamental 
property of how healthy physiological and cognitive functions emerge from the interactions of many system 
 components42. These results are consistent with a previous study documenting fractal structure of toddlers’ gaze 
 patterns17 and provide important context to past work examining this property of gaze in adults. Adult gaze pat-
terns exhibit fractal organization when viewing multiple types of  stimuli20,33, and during complex visual search 
 tasks34. Our finding that 91% of infant gaze patterns exhibited an organizational structure within the optimally 
flexible fractal range demonstrates that this system is already well organized in infancy, suggesting that the 
foundations of the visual attention system are already in place. These results complement extant findings of a 
striking level of maturity in higher-level visual cortex early in  infancy47. Relatedly, other infant studies document 
patterns of visual foraging thought to support efficient information  processing48, and that individual differences 
in visual attention are longitudinally associated with attentional and behavioral control in later  childhood49,50.

Additionally, our finding that infants’ gaze becomes more self-organized over developmental time aligns with 
past work demonstrating that infants’ attention progresses from more dispersed and unpredictable to more focal 
and integrated over the first years of  life11. This increase in organization could reflect a combination of more 

Table 1.  Linear mixed effects model table of model evidence displaying the effects of age and each of the 
stimulus conditions on a values with the Social condition as the reference event. Model 7 is the final, best-
fitting model. Standard errors displayed in parentheses and significant effects are bolded for emphasis.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Fixed effects

Intercept 0.824*** (0.005) 0.824*** (0.005) 0.824*** (0.005) 0.830*** (0.005) 0.851*** (0.005) 0.851*** (0.005) 0.851*** (0.005) 0.824*** (0.004)

Person-level

 Avg Prec − 0.198*** (0.014) − 0.198*** (0.014) − 0.201*** (0.014) − 0.200*** (0.014) − 0.201*** (0.014)

 Avg age − 0.001* (0.001) − 0.001* (0.001) − 0.001* (0.001) − 0.001* (0.001) − 0.001* (0.001)

Visit-level

 Age 0.002*** (0.000) 0.002*** (0.000) 0.001** (0.000) 0.001** (0.000) 0.001** (0.000) 0.001** (0.000) 0.001 (0.000)

 ET Prec − 0.146*** (0.018) − 0.145*** (0.018) − 0.145*** (0.018) − 0.146*** (0.018) − 0.146*** (0.018)

Movie-level

 Pixelated − 0.023*** (0.006) − 0.023*** (0.006) − 0.023*** (0.006) − 0.011*** (0.003)

 Atten cue − 0.030*** (0.006) − 0.030*** (0.006) − 0.030*** (0.006) − 0.015*** (0.003)

 Age: Pix 0.000 (0.000) 0.000 (0.000)

 Age:AtCue − 0.001*** (0.000) − 0.001*** (0.000)

Random effects

Btw-person

 Intercept 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000

 Age 0.000 0.000 0.000 0.000 0.000 0.000

Btw-VISIT

 Intercept 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001

Btw-movie

 Intercept 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Residual 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

Model fit indices

AIC − 16,889.6 − 16,929.7 − 16,934.6 − 17,114.8 − 17,126.5 –17,124.7 − 17,138.4 − 17,137.6

BIC − 16,854.1 − 16,887.1 − 16,877.8 − 17,036.8 − 17,034.3 − 17,025.4 − 17,039.0 − 17,031.1

Log likelihood 8449.8 8470.9 8475.3 8568.4 8576.3 8576.4 8583.2 8583.8
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Table 2.  Linear mixed effects model table of model evidence displaying the effects of face-looking on α values 
with the Social condition as the reference event. P < 0.001. Coefficients are presented with standard errors in 
parentheses, with significant effects bolded for emphasis. Model 5, which includes a Face-looking effect is the 
final best fitting model.

Model 1 Model 2 Model 3 Model 4 Model 5

Fixed effects

Between-person

 Intercept 0.834*** (0.006) 0.835*** (0.006) 0.839*** (0.005) 0.850*** (0.003) 0.848*** (0.003)

 Avg Age − 0.001* (0.001) − 0.001* (0.001) − 0.001* (0.001)

 Face-looking%, person Avg 0.117*** (0.035)

Within-person, between-visits

 Age 0.003*** (0.000) 0.001** (0.000) 0.001** (0.000) 0.001** (0.000)

 Face-looking (%), visit-Avg 0.087* (0.037)

Within-visit, between-movies

 Pixelated (dummy) − 0.022*** (0.004) − 0.017*** (0.004)

 Face-looking (%), movie Avg 0.029* (0.012)

Within-movie, between-segments

 Face-looking (%), segment-Avg − 0.027* (0.013)

Random effects

Between-person

 Intercept 0.001 0.001 0.000 0.000 0.000

 Age 0.000 0.000 0.000 0.000

Within-person, between-visits

 Intercept 0.002 0.002 0.001 0.001 0.001

 Pixelated 0.001 0.001

Within-visit, between-movie

 Intercept 0.000 0.000 0.000 0.000 0.000

 Residual 0.007 0.007 0.007 0.007 0.007

Model fit indices

AIC − 13,944.2 − 13,998.9 − 14,197.6 − 14,229.7 − 14,248.3

BIC − 13,910.0 − 13,944.1 − 14,115.4 − 14,126.9 − 14,118.1

Log likelihood 6977.1 7007.5 7110.8 7129.9 7143.2

Figure 3.  Fitted α-values plotted against Face-looking. Raw data are plotted, overlaid with best-fitting model 
results.
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reflexive orienting as well as developmental advances in key visual attention networks, including increasing 
volitional control over behavior and the emergence of more adult-like visual perception. Our finding provides 
an important systems-view of the many developing components of early visual development that have thus far 
been studied quite separately (e.g.,51).

We also found that regardless of age, infants demonstrated more self-organized gaze patterns while watch-
ing the social movies, compared to other dynamic stimuli. We suggest that overall, the social movies may have 
elicited a more fractally organized gaze strategies from infants by virtue of their more engaging content and 
greater visual complexity.

Gaze patterns also exhibited increased fractal structure when infants spontaneously looked to faces. This find-
ing was true both between-infants (e.g., infants who looked at faces more than the group average had increased 
fractal organization) and within-infants (e.g., infants who showed increased face-looking during segments, 
movies, and visits relative to their own averages had increased fractal organization during this segments, movies, 
and visits). Contrary to our hypotheses, this effect held in both the Social and Pixelated movies, perhaps because 
while the social visual information is degraded in the Pixelated condition, it can still be inferred.

Our findings suggest that not only does the fractal organization of gaze change between conditions, but this 
measure also varies dynamically on a shorter timescale as a function of infants’ gaze to highly relevant features. 
These findings highlight how fractal organization emerges at the intersection between infants’ attentional abili-
ties and the nature of the stimuli  themselves14. Evidence that the fractal structure of infants’ gaze varies by the 
salience of the overall stimulus and spontaneous looking to faces suggests that the fractal organization of gaze 
may reflect a state of active engagement with salient stimulus features.

This interpretation is consistent with findings that fractal structure may index attentional and cognitive effort 
in adults (e.g.,36), as well as with findings that the fractal structure of relevant adult systems is associated with 
metrics of on-task performance within a variety of different tasks and systems, using a host of different methods. 
For example, the fractality of adults’ eye gaze is associated with performance on complex visual  search43 and lan-
guage  comprehension52 tasks. A study examining coordinated movement found that the fractal structure of tim-
ing errors varied by the employment of different effortful cognitive strategies during the  task53. One small study 
found increased fractal structure of blood oxygen level dependent (BOLD) activity when participants recalled 
emotional relative to neutral  memories54. Such a metric of psychobiological system engagement in studies of 
infant development would have utility in its ability to quantify aspects of experience, such as perceived salience, 
that have often been elusive in the context of scientific inquiry. Of course, further evidence is needed to support 
this interpretation of fractal structures in infants’ eye-gaze. To provide convergent evidence of fractal structure 
indexing attentional and cognitive efforts in infants, future work will measure multiple systems implicated in 
visual attention (e.g., autonomic nervous system and neural activity) and will employ tasks that directly measure 
attention performance. Further, a developmental psychopathology approach comparing typically developing 
children and those at risk for neurodevelopmental disorder may further elucidate the importance of fractal 
structures for human psychobiology and shed light on their potential clinical utility as early biomarkers.

Our findings should be considered in light of several limitations. One limitation of our stringent quality-
maximizing exclusionary process is that our final sample resulted in an average of only two time-points per 
participant, limiting our ability to model age-related change in complexity within a person. However, 52% of 
our final sample did contribute two time-points or more. Second, for our hypothesis about the fractal structure 
of gaze patterns while viewing different stimulus contexts, we were unable to control for all characteristics of 
the stimulus conditions. While the Social and Pixelated stimulus conditions were matched on some lower level 
properties (e.g., motion), they may differ along other dimensions such as contrast and color. It could be the case 
that lower-level properties of the stimuli could account for some of our between-condition findings.

Finally, we recognize both the benefits and costs to our analytic approach. On one hand, measuring fractal 
organization allows one to eschew reductionism and capitalize on potentially meaningful variability inherent to 
emergent phenomena (e.g.,26,43,55). Emergent properties are thought to reflect multiple interacting components 
that change each other’s dynamics in their  interactions26, thus amount to more than the simple sum of component 
parts. This is particularly noteworthy, given the dynamic systems thinking at the heart of many contemporary 
developmental models. DFA is also agnostic to the specific nature of the system under study and can be applied 
to any level of analysis, from cellular to behavioral dynamics. Additionally, this approach also allows researchers 
to account for organization occurring at multiple timescales, without making a priori assumptions about the 
temporal nature of relevant component processes.

On the other hand, this approach is not without criticism. Systems-level analyses are a bit of a ‘black box’; the 
specific processes involved remain rather opaque both within, as well as between, individuals. That is, while these 
metrics quantify system organization, they tell us nothing about which systems this organization reflects, the 
potentially differential contributions of oculomotor mechanics (e.g., micro saccades), nor whether two identical 
fractal metrics between individuals executing the same task involve similar constituent parts. Thus, this approach 
is meant as a complement to, not a replacement of, other approaches designed to test subcomponents of a system 
in order to understand changes in behavior. Furthermore, like any other summary statistic, indices of system 
complexity are likely imperfect summations of the inherent dynamics of interest. Despite these challenges, we 
believe that this approach proves useful for helping to answer a variety of scientific questions about the emerging 
organizational structure of psychobiological systems thought to support complex behavior, while recognizing the 
open questions that remain. It catalyzes important future lines of inquiry including questions about the ways in 
which fractal organization of gaze may shape functional behavioral outcomes and interact with other systems.

In conclusion, this study employs a novel dynamic systems approach to quantify the fractal organization of 
children’s moment-to-moment gaze patterns as they viewed a variety of stimuli. Our findings suggest that the 
visual attention system is well organized within the first 3 years of life. Complex, fractal organization is evident 
even with very young infants—particularly in the context of socially salient stimuli—and these organizational 
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properties show continued growth throughout toddlerhood. In addition to informing our understanding of 
normative developmental processes during this span, the present findings have the potential to clarify the early 
emergence of atypical social-attentional biases common to a number of neurodevelopmental disorders (e.g., 
autism spectrum disorder).

Methods
Original sample. 14,870 time-series of eye-tracking data were collected from 190 1.84- to 35.04-month-old 
infants (86 females, mean age = 10.62 months) across 421 visits to the lab. All participants were recruited from 
the Institute of Child Development’s participant registry at the University of Minnesota as a part of a larger mixed 
cross-sectional and longitudinal study. Participant exclusion criteria included: (1) history of known genetic syn-
dromes associated with ASD risk; (2) significant medical conditions affecting growth, cognitive development, or 
significant vision or hearing impairment; (3) birth weight < 2000 g and/or gestational age < 36 weeks; (4) history 
of significant perinatal adversity, or exposure in-utero to neurotoxins; (5) contraindication for magnetic reso-
nance imaging; (6) having been adopted; and (7) family history of a first-degree relative with intellectual dis-
ability, autism, psychosis, schizophrenia, or bipolar disorder. Parents provided written and informed consent for 
their child’s participation in the study. All protocols are in accordance with relevant guidelines and regulations 
and were approved by the University of Minnesota’s Institutional Review Board (IRB).

As part of a planned missingness  design56, children contributed between 1 and 6 waves of data across this age 
span (mean 2.22 waves) during visits to the lab. Our final sample for analyses was comprised of children from 3 
cohorts, A, B, and C, as shown in Figure S1 of the Supplementary Information. Cohorts A and B were recruited 
into accelerated longitudinal studies. Cohort A consisted of 70 infants with a mean age of 14.10 months (enroll-
ment age range of 1–35 months), with study length commitments of 1 visit to 3 years. Cohort B consisted of 90 
infants with a mean age of 8.98 months (enrollment age range of 3–6 months), with a study length commitment 
of 2 years and five behavioral visits. Cohort C consisted of 23 infants with a mean age of 9.53 months, recruited 
for cross-sectional visits between 6 and 15 months of age. Cohort dummy variables were tested in the linear 
mixed effects models but did not predict any variance in our dependent variables (p’s > 0.5).

Experimental set-up. At each visit, infants were seated in their parent’s lap approximately 65 cm from a 
27-in. 1920 × 1080 resolution ASUS monitor that subtended 43.6° of visual angle with an aspect ratio of 16:9. 
They watched four 20-s movies of women dancing to lively music while waving toys, as well as pixelated ver-
sions of these same videos  (from57). These two stimulus conditions (Social and Pixelated; Fig. 4) were used to 
compare the fractal structure of gaze patterns while viewing social stimuli, relative to stimuli with most of the 
social information degraded. Movies were interleaved with dynamic audio-visual attention cues (Fig. 4) used for 
estimating recording accuracy and precision, and for establishing baseline levels of infants’ gaze  organization58.

(A) Social movies. Movies of naturalistic social stimuli, featuring 3 women dancing at intermittent intervals 
(Fig. 4); (B) Pixelated movies. Pixelated versions of the Social movies were used to blur the social information, 
thereby reducing the social salience of the scene while preserving some lower-level visual and motion proper-
ties (Fig. 4); (C) Audio-visual attention cues. Animated target stimuli were presented on a gray background (R: 
192 × G: 192 × B: 192, Hue: 160 Lum: 181), accompanied by attention-capturing sounds (Fig. 4). Cues were made 
up of a green circle (diameter 0.63° at a viewing distance of 60 cm), surrounded by 3 annuli that increased in 
size by 0.63°. The largest annulus (blue) was 2.52° in diameter. The stimuli were placed in the four corners of 

Figure 4.  Example of the sequence of stimuli presented at each visit. Socially salient movies featured women 
moving with child-friendly objects and the pixelated movies featured blurred, or pixelated, versions of the 
women moving with child-friendly objects.
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the screen at a distance of 14.1°, 8.2° (480, 270 pixels) from the edge of the screen, at a resolution of 1920 × 1080 
pixels. The fifth target was located center-screen (960, 540px).

The Social and Pixelated movies were accompanied by Basque children’s music, a language that none of our 
sample had exposure to. There were 4 different Social movies, each with a Pixelated counterpart, for a total of 
8 movies interspersed with audio-visual attention cues, as shown in Fig. 4. As shown in Table 1, there was very 
little variance at the movie level, suggesting that alpha values do not vary significantly by movie. At each visit, 
infants were randomly assigned to 1 of 2 pseudo-random movie presentation orders, in which either a Social or 
Pixelated movie was presented first (version order type did not predict any variance in our outcomes (p’s > 0.5)). 
The entire eye-tracking task lasted approximately 5 min.

Eye-tracking data collection. At each visit, infants’ eye movements were recorded with non-invasive 
corneal-reflection binocular eye-tracking equipment (Tobii TX300, recordings sampled at 300 Hz; Tobii Studio; 
Tobii Technology, Danderyd, Sweden). Because it is recommended that DFA use at least 1000 samples of con-
tiguous  data19 and could be susceptible to noise artifacts, the processing of eye-tracking data was done with two 
goals in mind: to be stringent about eye-tracking data quality, and to create time-series with enough contiguous 
raw data to analyze.

Quality-control exclusion criteria. Infants’ eyes were calibrated to the eye-tracking equipment at the 
beginning of each visit, using the manufacturer’s five-point calibration procedure. Precision, or the distance 
between repeated samples of gaze  points58, was included given that it is a measure of variability and thus is likely 
to influence DFA calculations that quantify nested patterns of variability. To measure the eye-tracker’s precision 
throughout the experiment, experimental trials were interleaved with audio-visual attention cues. Precision was 
included as a quality-control exclusion criterion due to its potential to influence fractal structure, given that it 
is an index of variation around a target stimulus. Audio-visual attention cues were presented at 3 time-points 
during each eye-tracking visit: at the beginning, interleaved with the Social and Pixelated movies, and at the end. 
Infants’ longest contiguous raw eye-tracking data for all available Attention Cue trials were analyzed for preci-
sion. Data from eye-tracking sessions with Root Mean Square Error of Approximation (RMSEA) values two 
standard deviations or more above the sample mean (indicating poor precision) were excluded. As such, data 
from eye-tracking sessions with an average RMSEA (averaged across X and Y axes for both eyes) greater than 
1.21 degrees of visual angle were excluded from analyses. As a result, data from 5 entire participants, 28 entire 
eye-tracking visits, totaling 939 time-series were excluded from future analyses. For the remaining eye-tracking 
visits, the average precision was 0.43° of visual angle.

Time-series generation. After the eye-tracking data were collected, we created gaze-based time-series 
using the amplitude of change in infants’ raw gaze position, sampled every 3.33 ms, over time (as shown in 
Fig. 5). Raw, unfiltered eye-tracking data were used given: (A) the dynamic systems theoretical motivations for 
this study, (B) our aim to examine the temporal unfolding of gaze organization at multiple different timescales, 
and (C) the input requirements for DFA analyses. Time-series were generated for infants’ eye movements while 
watching the Social and Pixelated stimulus conditions as well as while watching the audio-visual attention cues 
to serve as a baseline measure of gaze organization for an exogenously driven spatial attention cue.

As implemented, DFA does not allow for missing data points. To maximize the number of usable time-series, 
eye-tracking data from each movie were divided into approximately 6-s segments for analysis. Each Social movie 
was viewed frame-by-frame in Datavyu (Datavyu, Version 1.0) to segment the movie into discrete, 3- to 8-s move-
ment events (e.g., one woman begins dancing and the others sequentially join her; all women sequentially stop 
moving; one woman dances and then stops and then starts again; one woman moves her balloon and then starts 
and stops dancing). Of the 4 movies, 3 were divided into 3 segments (mean 7.38/SD = 2.15 s long), and 1 movie 
was divided into 4 segments (mean 6.47/SD = 1.58 s long) based on events in the movies. All Social movies and 
their Pixelated counterparts were segmented for analysis, as was each audio-visual attention cue.

Blinks were identified using a noise-based  algorithm59. All data missing as a result of blinks (less than 200 ms) 
were linearly interpolated using data from the last valid sample before the start of the blink, and the first valid 
sample after the end of the blink (mean proportion interpolated = 0.073, range 0–0.76). After interpolation, 
infants had an average proportion of 0.15 (range 0–1) residual missing data per segment. Given past work 
suggesting too much aggregation can bias detrended fluctuation analysis (e.g.,20), we chose a stringent quality 
control threshold for the permissible proportion interpolated for each segment. After visualizing the distribu-
tion, the 80th quantile threshold for the sample’s proportion interpolated was calculated (0.115) and segments 
with a proportion exceeding that value were excluded from analyses; data from an additional 1 entire infant, 1 
entire eye-tracking session, totaling 2788 time-series were removed from future analyses. The mean proportion 
of interpolated segments for the remaining sample was 0.0152. Proportions of interpolated and residual missing 
data were entered into all models as covariates.

Lastly, we identified each participant’s longest contiguous stream of eye-tracking data for each movie seg-
ment, and calculated the change in Euclidian distance between two samples D = sqrt

(

(X2 − X1)
2 + (Y2 − Y1)

2
)

 , 
relative to the change in time between samples, T = t2 − t1 for the entire stream. The amplitude of gaze change 
was then calculated as D/T as shown in Fig. 5 and used for our time-series. We chose to use the amplitude of 
change in gaze position over time as our time-series in order to account for changes on both the X and Y axes, 
to avoid excessive computation and difficulties interpreting our outcome for fractal organization along just one 
axis (in alignment  with15,34,35). As DFA has not been validated on time-series with fewer than 1000 data  points19, 
we excluded all time-series with fewer data points. Accordingly, data from an additional 2 participants, 8 eye- 
tracking visits, totaling to 2223 segments were excluded from future analyses.
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Final sample for analysis. The final sample consisted of 182 infants (84 females) who completed a total 
of 384 eye-tracking visits, amounting to 8920 time-series. The final sample had an average age of 15.33 months 
(range 2.50–35.04 months) and contributed data at an average of 2.04 visits (range 1–6). The final sample of 
infants watched an average of 10.29 movies per visit (range 1–16; including audio-visual attention cues), con-
tributing an average of 22.23 time-series of data per visit (range 1–36). On average, infants contributed 9.16 
(range 1–14) time-series from Pixelated movies, 10.43 (range 1–14) time-series from Social movies, and 5.14 
(range 1–8) time-series from audio-visual attention cues, at each visit. The average length of each time-series was 
5775.237 data points long (1925.712 ms; SD = 2013.26). Neither the average numbers of Pixelated or Social time-
series explained any variance in our outcomes. The final sample had an estimated average eye-tracking accuracy 
of 1.76 (range 0.29–5.88) and precision of 0.40 (range 0.077–1.19) in degrees of visual angle. A flow diagram of 
the exclusionary process is shown in Figure S1 of the Supplementary Information.

Detrended fluctuation analysis (DFA). A variety of algorithms are available to estimate parameters that 
coincide with this noise distribution, each often a linear or non-linear transform of the  other60. We chose DFA 
as it has been established for biomedical data and, unlike other metrics of entropy or variability, this approach 
allows us to examine variability at multiple time scales. This property of scale invariance is thought to reflect 
interaction-dominant characteristics and potentially self-organized systems that are core to developmental 
dynamic systems theories long heralded by the field but usually left unmeasured. DFA was performed on the 
time-series (amplitude of gaze change over time) derived from each movie segment, using a MATLAB package 
created specifically for biomedical time-series19. This analysis estimates the power law exponent that defines the 
scale-invariant, or fractal, structure of a time-series through the following analytic sequence. The user-defined 
parameters, values, and respective justifications are listed in Table S1 of the Supplementary Information.

First, the time-series (amplitude of X and Y coordinate gaze change over time) is converted to a random-walk-
like structure by subtracting the mean value and then taking the integral. Next, the time-series is divided into 4 
equal-sized non-overlapping windows, with a minimum window size of 4 and a maximum window size of ¼ of 
the length of the time-series, and a polynomial trend is fit to each window of data. The local root mean square 
(RMS) is then computed for the residual variation around a specified polynomial trend (m = 2) fitted to each 
window of data. Given that fast- and slow-changing fluctuations in a time-series influence the RMS differentially 
depending on the window size (i.e., fast-changing fluctuations influence small window sizes and slow-changing 
fluctuations influence larger windows), the RMS is then calculated for the different window sizes.

Figure 5.  Example of a time-series comprised of the amplitude of X- and Y-coordinate gaze change (calculated 
as the change in Euclidian distance between two samples D = sqrt

(

(X2 − X1)
2 + (Y2 − Y1)

2
)

 , relative to the 
change in time between samples, T = t2 − t1 for the entire data stream, D/T ) over time (1/300th of a second 
from a 300 Hz sampling rate).



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17216  | https://doi.org/10.1038/s41598-020-73187-w

www.nature.com/scientificreports/

DFA identifies the monofractal structure of the time-series as the power law relation between the overall 
RMS’s computed for multiple window sizes (as shown in Figure S3 of the Supplementary Information). This 
power law relation is indexed by a or the slope of the regression line fit to the log(frequency) and log(power) 
of the variation in the time-series. a denotes how fast the local RMS changes with increasing window sizes, 
summarizing the long-term memory of the series and quantifies the monofractal structure of a time-series on a 
continuum from white noise (a ~ 0.5), through ‘pink noise’ (a ~ 0.8), to brown noise (a ~ 1.5) as shown in Fig. 6. 
a values calculated using a larger number of windows (i.e., 19 as  in19) are comparable with r = 0.8 and a median 
absolute difference of 0.04 (range 0–0.6).

Linear mixed effects modeling. We conducted linear mixed effects modeling using the lme4 package in 
R 3.3.1, to account for the fact that our dependent variable, a, is nested within participants, eye-tracking visits, 
and movies (as shown in Fig. 7). Given that time-series (level 1) were nested within movies (level 2), which were 
nested within laboratory visits (level 3), which were nested within individual participants (level 4), we tested a 
4-level nested random effects structure for all of our models.

The following quality control exclusion criteria covariates that provide indices of the quality of the eye-
tracking data were tested at all appropriate levels: the proportion of interpolated data, the length of the longest 
contiguous sequence of gaze data used for DFA, and the estimated precision of the gaze recording. The follow-
ing between-person covariates were tested: sex, cohort, average age of data contribution (centered at the grand 
mean), average eye-tracking precision (centered at the grand mean), average proportion of data interpolated 
(centered at the grand mean), and average length of the longest fixation used for DFA calculations (centered at 
the grand mean). The following between-visit covariates were tested: estimated eye-tracker precision (centered 
at the person mean), average proportion of the data interpolated (centered at the person mean), average longest 
fixation used for DFA calculations (centered at the person mean), the number of Pixelated and Social movies 
watched, and counterbalancing-version (denoting the order of movies presented). The following between-movie 
covariates were tested: average proportion of the data interpolated (centered at the visit mean), and the average 
longest fixation used for DFA calculations (centered at the visit mean). Finally, the following between-segment 
covariates were tested: proportion of the data interpolated (centered at the movie mean), and the longest fixation 
used for DFA calculations (centered at the movie mean).

Linear mixed effects models were fit in the following steps: after establishing the appropriate functional form 
(i.e., how a values change with age), the appropriate structure of random effects was assessed (i.e., whether ran-
dom effects for both intercept and slope were needed). Given their ages and the nature of the task, we did not 
expect that even the oldest children would move into the brown-noise range but we nonetheless tested non-linear 
age effects, as a sensitivity check. Person-level random effects for intercept and slope, visit-level random effects 
for intercept and stimulus type, and movie-level random effects of intercept were included in the model. Next, 
quality-control covariates (e.g. eye-tracker precision) were added to the model. Finally, categorical variables for 
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Figure 6.  Visualization of time-series with different organizational structures from white noise, through pink 
noise, to brown noise with corresponding a values. 
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stimulus types (i.e., Social, Pixelated, and Attention Cue), and their interaction with age, were added to test our 
hypotheses. The Social movie dummy variable was omitted from the model and was thus used as the reference 
event. At each step, model comparisons were conducted using chi square log likelihood ratio tests and Second-
Order Akaike Information Criteria (AIC; accounting for sample size and model complexity). Additional model 
parameters were retained only if AIC values and likelihood ratio tests indicated that adding them led to a model 
that better fit the data. Percentages of variance explained were calculated by squaring the correlation of fitted 
and actual values.

To test the association between a and spontaneous face-looking, only data from Pixelated and Social movies 
were included in the linear mixed effects models (n = 7019 eye-tracking segments). The Social movie condition 
was used as the reference event and omitted from the model. Linear mixed effects models were fit using the 
same steps as above, with the addition of four variables allowing us to examine effects of face looking at all four 
levels: between-person face-looking (centered on the grand mean), within-person face-looking (visit average, 
centered on the individual’s average face-looking), within-visit face-looking (movie average, centered on the 
visit’s average face-looking), and within-movie face-looking (segment average, centered on the movie’s average 
face-looking). We also tested for interactions between Face-looking and stimulus Condition, as we hypothesized 
that face-looking should be related to α only in the Social movie condition.

Defining areas-of-interest (AOI’s). Open Source Computer Vision  Library61 was used to automati-
cally identify face-related Areas-of-Interest (AOIs) for each movie-frame in the non-pixelated movies. After 
face regions were detected in these movies, we hand-checked each movie frame to ensure that each face was 
accurately detected. If there were errors (e.g., partially obscured faces were often missed by the algorithm), we 
linearly interpolated the correct face AOI from the most recent frames before/after the missing frame. If the 
face was completely obscured by an object (e.g. a ball), that face AOI was not included for that frame. Thus, the 
number of face AOI’s in each frame ranged from 0 to 3. AOI’s from each Social movie were then copied to their 
Pixelated counterpart.

Estimating age-related change in face-looking. Eye-tracking data from time-series that contributed 
to DFA were also examined for the number of samples in face AOI’s versus non-face AOIs. For each time-series, 
we tallied the number of gaze coordinates recorded within the boundary of a face-AOI, and the number of gaze 
coordinates recorded outside the boundary of a face-AOI. Then, we calculated the proportion of time spent 
within a face AOI relative to anywhere else (i.e., [n samples in face AOI]/[n samples in nonface AOI]) across all 
movie segments in a visit.

We used generalized mixed effects logistic regression models to estimate age-related change in infants’ spon-
taneous preferences for faces in a given movie. The outcome variable for these analyses was the number of 
samples in a face AOI versus the number of samples in a non-face AOI, and a logistic linking function was used. 
As with our other models, we first established the functional form, then added covariates to the model, and 
then examined the effect of stimulus condition (Pixelated or Social) and interactions with age. Random effects 
were included at the person-level only, as models including them at the visit-level failed to converge. The Social 
condition was used as the reference group.

The best fitting-model included random effects of intercept, age, and stimulus condition, and fixed effects 
of intercept, age, stimulus condition, and Age x Condition. Eye-tracker precision, the duration of the longest 
stream of contiguous data, and the proportion of interpolated data for the time-series were included as significant 
quality control covariates, in addition to the individual’s average age across visits to account for the accelerated 
longitudinal design.

Figure 7.  Illustration of the nested levels of the data. Infants came into the lab for multiple visits at which they 
viewed two kinds of movies. Each movie was then divided into segments for fractal analyses that were used to 
create time-series for DFA analyses. a values were derived for each time-series of data.
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Data availability
Data from this study are available upon request. Code is available at https ://githu b.com/rrobi nn/fract al-eye-
analy ses/.
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